Sapphire Instruments Co., Ltd.

Calibration Procedure of SI-9302

This procedure is for use by qualified service personnel to adjust SI-9302 properly. The equipments required are listed in Table 1.

No.	Item	Minimum Requirements
1	Power Supply	9VDC/5000mA mains adaptor or 9V battery
2	DMM	DC Accuracy < 0.5%
3	Function Generator	Maximum Frequency > 10MHz Sine-wave Distortion < 1%
4	Sine wave Signal Source	600Vpp, 60Hz sine wave 200Vpp, 20kHz sine wave
5	Oscilloscope	Bandwidth >= 20MHz Accuracy <= 2%

Table 1

This procedure is divided into following steps;

- A. Prepare the probe for adjustment.
- B. Adjust input bias voltage: VR2.
- C. Adjust output offset voltage: VR3 (1/20 ratio) & VR4 (1/200 ratio).
- D. Adjust square-wave compensation for +input: VC1.
- E. Adjust square-wave compensation for -input: VC2.
- F. Adjust CMRR at 60 Hz: VR1.
- G. Adjust CMRR at 20kHz: VC2.
- A. Prepare the probe for adjustment.


A-1. Use a small flat screwdriver to peel the both panels off, referring to Fig. 1.

- A-2. Loosen the four screws on the plastic cases as shown in Fig.2.
- A-3. Remove the plastic cases. Fig. 3a and Fig. 3b shows the location of adjustments on top side and bottom side respectively.
- A-4. Use 9VDC /500 mA Mains adaptor and turn on all test equipments.
- A-5. Allow the probe and test equipments to warm up 20 minutes at an ambient temperature of 18 degree Celsius to 28 degree Celsius.
- A-6. In order to make following operation easier, use one plastic case to support the metal case and the input head as shown in Fig. 4.

Fig. 2:

Fig. 3a: Top side

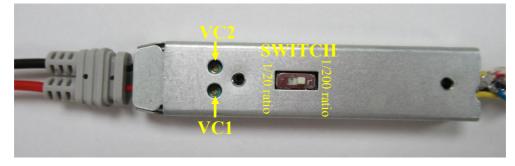
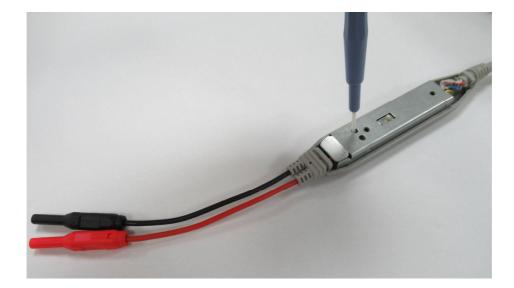
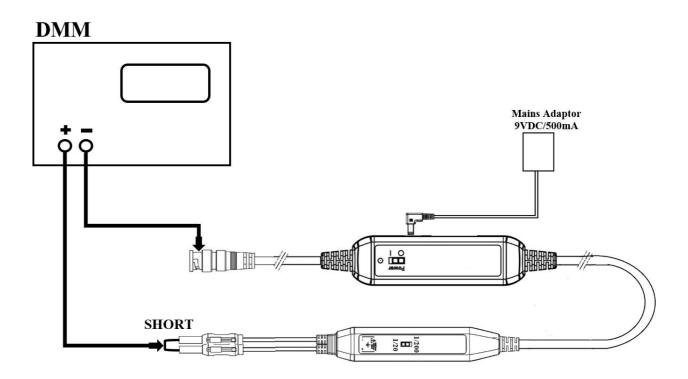



Fig. 3b: Bottom side


Fig. 4:

B. Adjust input bias voltage

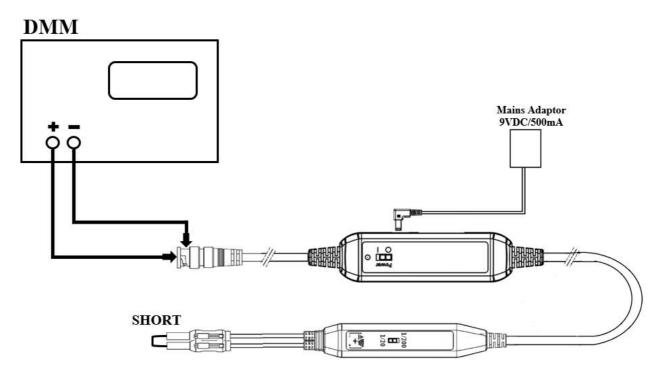

- B-1. Connect the probe as shown in Fig 5.
- B-2. Switch the probe to 1/20 ratio.
- B-3. The value of input bias voltage is displayed on the digital Multimeter.
- B-4. Adjust VR2 to make the input bias voltage as small as possible.
- B-5. The criterion is $-3mV \le Vid \le +3mV$.

Fig. 5: Adjusting the input bias voltage set-up

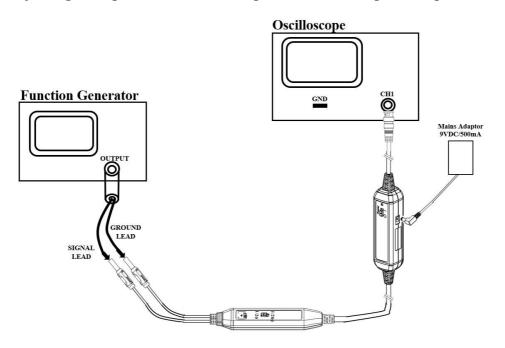

- C. Adjust output offset voltage
 - C-1. Connect the probe as shown in Fig 6.
 - C-2. Switch the probe to 1/20 ratio then adjust VR3 for minimum output offset voltage.
 - C-3. Switch the probe to 1/200 ratio then adjust VR4 for minimum output offset voltage.
 - C-4. For easy tuning of output offset, tune both ratio (1/20 & 1/200) interchangeably until both ratios meet the criteria.
 - C-5. The criterion is -5 mV \leq Vout \leq +5 mV.

Fig. 6: Adjusting the output offset voltage set-up

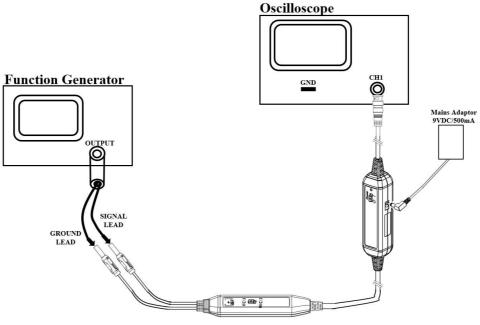
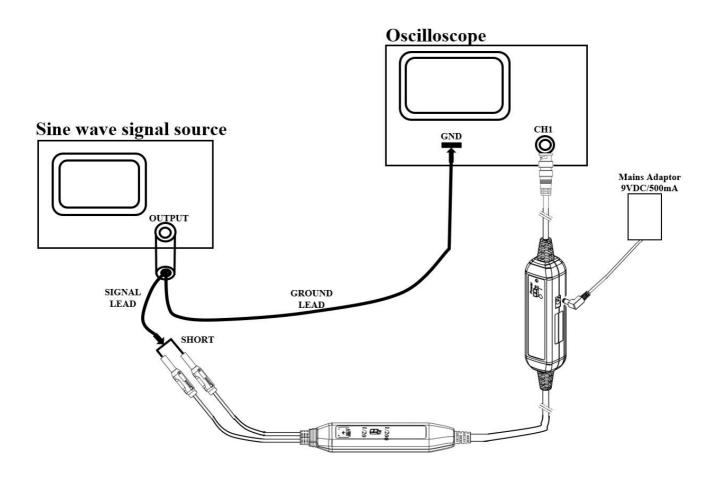

- D. Adjust square-wave compensation for +input.
 - D-1. Connect the probe as shown in Fig 7.
 - D-2. Set the output of the function generator to 20Vp-p, 1kHz square-wave.
 - D-3. Set the input impedance of the oscilloscope to 50-ohm. If the oscilloscope doesn't provide the 50-ohm input impedance, add a feed through 50-ohm terminator to the input.
 - D-4. Set the VOLTS/DIV of the oscilloscope's panel to 500mV and the TIME/DIV to 50 uS.
 - D-5. Switch the probe to 1/20 ratio.
 - D-6. Adjust VC1 to make the front corner roll off or overshoot of the square-wave displayed on the oscilloscope less than 20 mV.

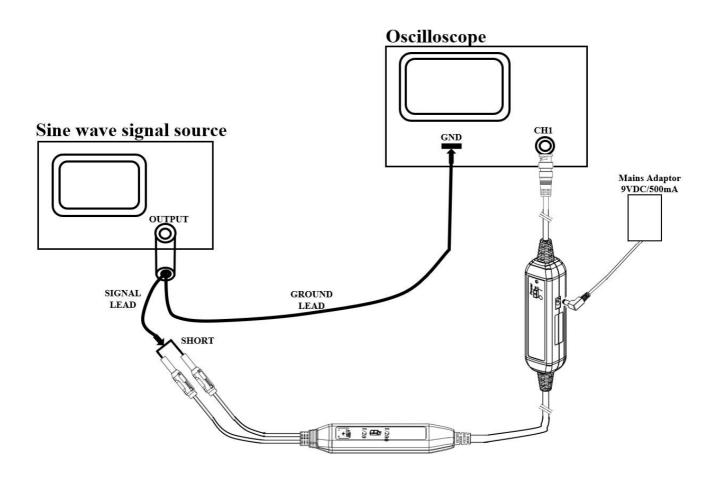
Fig. 7: Adjusting the square-waveform compensation for + input set-up

- E. Adjust square-wave compensation for input.
 - E-1. Connect the probe as shown in Fig 8.
 - E-2. Set the output of the function generator to 20Vp-p, 1kHz square-wave.
 - E-3. Set the input impedance of the oscilloscope to 50-ohm. If the oscilloscope doesn't provide the 50-ohm input impedance, add a feed through 50-ohm terminator to the input.
 - E-4. Set the VOLTS/DIV of the oscilloscope's panel to 500mV and the TIME/DIV to 50 uS.
 - E-5. Switch the probe to 1/20 ratio.
 - E-6. Adjust VC2 to make the front corner roll off or overshoot of the square-wave displayed on the oscilloscope less than 20 mV.


Fig. 8: Adjusting the square-waveform compensation for - input set-up

F. Adjust CMRR at 60 Hz

- F-1. Connect the probe as shown in Fig 9.
- F-2. Set the output of the function generator to 600Vp-p 60 Hz sine-wave
- F-3. Set the input impedance of the oscilloscope to 50-ohm. If the oscilloscope doesn't provide the 50-ohm input impedance, add a feed through 50-ohm terminator to the input.
- F-4. Set the VOLTS/DIV of the oscilloscope's panel to 1mV and the TIME/DIV to 2mS.
- F-5. Switch the probe to 1/20 ratio.
- F-3. Adjust VR1 for minimum Vout displayed on the oscilloscope.
- F-4. The criterion is Vout <= 5mVp-p (after excluding noise).


Fig. 9: Adjusting the CMRR at 60Hz set-up

G. Adjust CMRR at 20KHz

- F-1. Connect the probe as shown in Fig 10.
- F-2. Set the output of the function generator to 200Vp-p 20 kHz sine-wave
- F-3. Set the input impedance of the oscilloscope to 50-ohm. If the oscilloscope doesn't provide the 50-ohm input impedance, add a feed through 50-ohm terminator to the input.
- F-4. Set the VOLTS/DIV of the oscilloscope's panel to 1mV and the TIME/DIV to 2mS.
- F-5. Switch the probe to 1/20 ratio.
- F-3. Adjust VR1 for minimum Vout displayed on the oscilloscope.
- F-4. The criterion is Vout ≤ 10 mVp-p (after excluding noise).

Fig. 10: Adjusting the CMRR at 20kHz set-up

